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Abstract 

The TILT compiler for Standard ML represents programs internally using a predicative lambda 
calculus based on Girard's Fw. At the kind level, this language is notable for containing singleton 
kinds and dependent product and function kinds. Previous work [SH99] established the decidability 
of type equivalence for this language. 
This paper presents a typechecking algorithm for the full TILT internal language and discusses 
some of the more interesting features of the language. The particular use of intensional type 
analysis to handle arrays of unboxed floating point numbers is described. An extended calculus 
is also introduced which permits unlabelled singletons at higher kind, in order to allow for more 
compact program representation. The extended calculus is related to the restricted calculus via a 
transformation that eliminates the unlabelled singletons, and the decidability of the typechecking 
algorithms for both the original and extended calculus is shown. 
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1    Introduction 

1.1 Background 

The past years have seen a great deal of interest in the idea of "typed compilation": that is, 
maintaining type information throughout the compilation process. This type information can be 
exploited by the compiler internally to allow for optimized data representations and to do tag-free 
garbage collection, as well as providing the compiler with a basis for internal correctness checks. 
This work was pioneered in the TIL compiler at CMU [TMC+96]. Other recent work has also 
suggested the possibility of maintaining type information through to the machine code as a form 
of certification [MWCG97J. 

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable. 
However, TIL compiled only the core language of Standard ML: the powerful modular features 
that are one of the most important elements of SML were not dealt with. The TIL Two (TILT) 
compiler was aimed at addressing this shortcoming. 

The TILT architecture is based around two typed intermediate languages. The initial elabora- 
tion from SML source targets a structures calculus called the HIL (High Intermediate Language). 
This language is relatively close to SML, and among other things provides the interface language 
used for separate compilation. After elaboration (and hence typechecking), the HIL is translated to 
a second typed language called the MIL (Middle Intermediate Language) through a process called 
phase splitting [HMM90]. The phase splitting process maps each SML structure into separate type 
and term level records, representing the static and dynamic portions of the structure. Similarly, 
SML functors are mapped to type and term level functions. In this fashion, modular programs are 
translated into programs containing only lambda calculus terms. 

We will not address the details of phase splitting here, except to note that serving as a target of 
this translation is the primary motivation for the type theory of the MIL. The MIL must be able to 
express within a single lambda calculus all of the constructs of both the module language and the 
core language. Singleton kinds are used to express type definitions in signatures, and dependent 
product and function kinds serve to express signatures which contain definitions in terms of previous 
fields. 

The MIL is also the language in which almost all of the optimization passes are done. This 
constrains the design of the MIL, since it must be possible to express the results all of the desired 
optimizations in a typed fashion. In particular, it is important that the necessary primitives for 
data representation optimizations be present at this level. 

1.2 Overview 

This paper gives a detailed overview of the MIL largely as implemented in the TILT compiler. The 
major omission is that closure conversion and the typing of closures is not treated here. 

In [SH99], Stone and Harper present an algorithm for deciding type equivalence in a lambda 
calculus with singleton kinds. Section 2 of this paper describes the extension of this calculus to 
the full MIL language. Design issues motivating the extensions are discussed, and algorithms for 
typechecking are given along with proofs of termination. 

Section 3 addresses a major practical shortcoming of the MIL: the inability to represent kinds 
compactly. We present an extended calculus called the NIL which addresses these shortcomings 
by providing unlabelled singletons at higher kind. The MIL algorithms and proofs are extended to 
the NIL. 



The main technical results of the paper are the creation of an algorithm for deciding typechecking 
in a language with unlabelled singletons at higher kind, and the proofs of the decidability of 
typechecking in both the core and the extended system. 

Appendices A and B contain the full static semantics for the MIL and NIL, respectively. 

2    Mil 

2.1    Relation to A^E5 

The constructor and kind level of the MIL has been studied separately by Harper and Stone [SH99]. 
That paper presented a core MIL-like language c 
algorithm for determining constructor equivalence. 
That paper presented a core MIL-like language called A<ESand gave an a sound and complete 

Kinds 

Constructors     c ::= 

Contexts A :: 

=   T Kind of simple constructors 
1   ST(c) Singleton kind 
|   £(a :: K).K Dependent function kind 
|    II (a :: K).K Dependent product kind 

=   h Base types 

1    a Variables 
\   Xar.K.c Function 
|    cc Application 

(c, c) Pair 
|    c.i Projection 

• Empty context 
|    A[O::K] Context extension 

Fig ure 1: A<~5Syntax 

The syntax of the A<S5 calculus is given in figure 1. This calculus makes up the core of the MIL 
language discussed here. The major type theoretic ideas of the MIL are for the most part already 
present in A<ES. From a practical standpoint however, many essential components are missing 
from A<£S: in particular, A<ss does not deal with the term level structure of the language. This 
section will flesh out the term level extensions necessary, and will discuss their typing properties. 
The kind level remains unchanged from A<E5 to MIL, but the set of constructors increases. 

2.2    Constructors and types 

The syntax for the constructor and kind levels of the MIL is given in figure 2. In contrast to 
A<S5, the MIL language includes base constructors such as Int that are used to classify terms. 
All of these base constructors are standard, with the exception of the use of the known sum type, 
corresponding to the type of a sum for which the branch inhabited is known. 

The MIL also includes an explicit let construct, although technically this is definable in the 
calculus [SH99]. Let binding provides a means for expressing constructors more compactly, as well 
as to name and reuse the results of type computations. This serves both to help make compilation 
faster and to improve runtime performance, since constructors may be needed at runtime. In order 
to reduce the size of programs, we elide the classifiers on the let bound variables.   While this 



Kinds K::=   T Types 
1   ST(c) Singleton kinds 
|    E(ct :: K).K Dependent pair kinds 
|    n(a :: K).K Dependent function kinds 

Constructor s     c ::=   a Constructor variable 
|    /nf Integers 
|    Boxedfloat Boxed floating point numbers 
1   /i(a,/3).(c,c) Recursive constructor 
|   ex c Pairs 
|     C -4 C Monomorphic functions 
|    c+ c Sums 
1    c +' c Known sums 
|    c array Polymorphic arrays 
|    Aa::K.c Function 
|   cc Application 

(c, c) Constructor pairing 
I      7Ti C Projection 
|    let a = c in c end Constructor definition 

Types r::=   T(c) Constructor inclusion 
|    (a :: «, r) —> r Polymorphic functions 
j    F/oa^ Unboxed floating point numbers 
|     TXT Pair type 
|    let a = c in r end Constructor definition 

Contexts A::=   • Empty context 
■ |    A [a; : r] Constructor extension 

|    A[CV::K] Kind extension 

The notation «i x K2 indicates £(a :: KI).K2 where a £ fv(«2)- 

Figure 2: MIL Kinds, constructors and contexts 



information is easily reconstructed from the definition itself, this imposes some additional work on 
the compiler. 

Also given in figure 2 is the syntax for the type level. Unlike the constructor level which 
corresponds to the notion of types as data, the type level in a predicative system corresponds to the 
notion of types as classifiers. The constructor level is included into the type level via an explicit 
inclusion T(c). The type level also contains classifiers for polymorphic functions, unboxed floating 
point numbers, and pairs of terms. The duplication of the the pair type at the type level indicates 
the possibility of constructing pairs containing arbitrary terms (such as unboxed floats) which is 
not provided for by the constructor level. For similar reasons a constructor let form is also included 
in the type level so that constructors (but not types!) can be bound in types. 

For presentational purposes, the static semantics of the MIL calculus is initially described using 
a straightforward declarative approach which is more easily understood. This approach does not 
correspond naturally to an algorithm, and hence it is will be necessary in subsequent sections to 
develop an equivalent algorithmic presentation of the static semantics. The complete declarative 
static semantics for the MIL language is defined in appendix A.l, but for the most part this section 
will concentrate on the key non-standard elements that make the MIL theory interesting. 

A ok Well formed-contexts. 
A h K Well-formed kinds. 
A h Ki < K2 Subkinding. 
A h ci = C2 :: K    Constructor equivalence. 
A h c :: K Well-formed constructors. 
A h T Well-formed types. 
A h e : r Well-formed terms. 

Figure 3: MIL declarative judgements 

The judgements used to define the MIL static semantics are described in figure 3. In addition 
to the expected well-formedness judgements, there is also a sub-kinding judgement. The presence 
of singleton kinds means that a constructor may have multiple kinds: for example, the judgements 
A h Int :: T and A h Int :: Srilnt) are both derivable in the system. The sub-kinding judgment 
reflects the fact that a singleton kind gives more information than does a simple kind, and hence 
should be viewed as a subtype. In particular, the key rule from the sub-kinding judgment is the 
singleton rule: 

A h ST{c) 
SingletonL 

A h ST(c) * T 

which says that any well-formed singleton kind is a sub-kind of T. The sub-kinding judgment affects 
constructor well-formedness via a subsumption rule 

A h c :: K   A\- K ■< K' 
    Subkind 

A h c :: K' 

which says that a constructor is well-formed at kind K if it is well-formed at a subtype of K. 



The main non-standard typing rules are the extensionality rules and the self rule of the con- 
structor well-formedness judgement [HL94]. The self rule is the introduction rule for singleton 
kinds, and says that any constructor c which is well-formed at kind T is well-formed at kind ST{C). 

Ahc::T 
    Selfify 
Ahc::ST(c) 

Accompanying this rule are the extensionality rules: 

Ahc::E(a::Ki).K2   A h c.l :: K[ 

A \- c :: £(Q/ :: K[).K2 

Ahc::E(a::Ki).K2   A h c.2 :: K'2 

Ahc::/vi X «2 

A h c :: n(a :: Ki).«2    A[a::«i] h ca :: K2 

A h c :: n(a :: K\).K'2 

SigmaExtl 

SigmaExt2 

PiExt 

These rules essentially extend the notion of the self rule to higher kinds via eta-expansion: that 
is, they allow derivations such as [a::U(ß :: T).T] ha:: U(ß :: T).Sr{a ß) For a more detailed 
discussion of these rules see [SH99, HL94]. 

2.3    Terms 

The term level MIL syntax is given in figure 4. In addition to the standard lambda calculus 
constructs the MIL also provides for expression and constructor let bindings, again with the classifier 
elided for reasons of program size. Unlike most lambda calculi though, the MIL also includes low 
level data representation primitives (such as float boxing and unboxing primitives). In addition to 
serving as the target language of phase-splitting, the MIL also serves as the object of most of the 
compiler optimization phases, including inlining, common subexpression elimination, and function 
specialization. These optimizations may expose opportunities for data-layout optimization, such 
as eliminating redundant boxing and unboxing of floats which can only be performed if the boxing 
and unboxing operations are present at the MIL level. 

For similar reasons, the sum case construct in the MIL is also somewhat non-standard, as can 
be seen from the sum elimination rule [HS97]. 

A h e : T(ci + c2) 
A[x : T(ci +1 c2)] h ex : r   A[x : T(a +2 c2)] h e2 : r     o        ,.   .     . 
 _   bum elimination 

A h caseTeof {inl(a;) =j> e1,inr(a;) =^- e2} : r 

Notice that the case construct does not destructure its argument - rather, it will bind the argument 
in the appropriate branch to a variable whose type is a known sum indicating the inhabited branch. 
The known sum projection construct can then be used to project out the value if it is actually 
required by that particular branch. 

Ahe:r   Ahr = T{cx +*' c2) 
    Known sum elimination 

A h projt(e) : T(a) 



Exps   e ::= =      X Term variables 

1    n Integers 

1 / Floating point numbers 
|    boxfloat(e) Float boxing 
|    unboxfloat(e) Float unboxing 
|   arrayc(e,e) Polymorphic array 
|    sub[c](e, e) Polymorphic subscript 
|    fsub(e,e) Float subscript 

1    (e>e> Polymorphic pairing 
I    Xi[c] e Polymorphic selection 
|    rec/ = \(a::n,x : r) : r.e Recursive function abstraction 

1    elc]e Application 
I    inlc,ce Sum injection left 
1   inrCiCe Sum injection right 
|    caseT e of {inl(x) =£• e,inr(.r) =4> e} Sum case 
1    Pr°j;(e) Known sum projection 
1    rollc(e) Recursive type introduction 
|    unroll(e) Recursive type elimination 
|    let x = eine end Expression binding 
|    let a = c in e end Constructor binding 

Figure 4: MIL expressions 

2.3.1     Type analysis 

A key optimization that the original TIL compiler implemented was the use of non-uniform data 
representation. Many implementations of languages with polymorphism require that all values fit 
into a word. In particular, array elements must always be word-sized, which means that arrays of 
64 bit floats (for example) must actually be arrays of pointers to floats. This is highly undesirable, 
both because of the extra pointer indirections implicit in each lookup and because of the consequent 
loss of data locality. 

TIL pioneered the use of intensional polymorphism to avoid this overhead. By passing types at 
runtime and allowing code to dispatch on them, unboxed floating point arrays could be used with 
the appropriate subscript stride chosen at runtime. Different pieces of code could be run based on 
the runtime type of polymorphic data. 

The MIL calculus differs from the A™'calculus of [HM95] in that it does not contain an explicit 
type analysis construct such as typerec or typecase. This does not mean however that the idea 
of intensional type analysis has been abandoned: rather, the type analysis has been hidden inside 
the primitives which need to use it. For example the constructor argument to the polymorphic 
subscript operator sub[c](e,e) is actually used at runtime to determine the appropriate stride. 
This polymorphic subscript in the language without a typecase can be thought of as a derived 
form in an underlying language with typecase: that is, subscript is a polymorphic function which 
internally uses typecase to choose the appropriate monomorphic subscript operator. 



2.3.2     Floating point numbers 

TILT deals with floating point numbers by using two different types, Boxedfloat and Float corre- 
sponding to the types of boxed and unboxed floats, with appropriate term level coercions between 
them. This allows the optimizer to deal directly with data representation optimizations, even at 
the relatively high level of the MIL. To prevent unboxed floats from being passed to polymorphic 
functions or to polymorphic primitives (such as pair injections and projections), the Float type is 
restricted to the type level. The predicativity restriction therefore enforces the uniform represen- 
tation of polymorphic arguments. In non-polymorphic argument positions on the other hand, the 
compiler is free to use the unboxed floating point type. This is more efficient because it avoids 
repeatedly boxing and unboxing arguments, and also since it allows floating point arguments to be 
passed in floating point registers. 

One obvious problem with this is that the type of arrays of unboxed floats cannot be constructed 
in this system, since the argument to the array constructor must be a constructor (not a type). 
This would seem to mean that we are unable to implement flattened float arrays. However, by using 
type analysis in the array constructor as well as the subscript operator, we can avoid at least some 
of the difficulty. There is nothing that prevents the Boxedfloat array type from being implemented 
using unboxed floats, even though the Boxedfloat type itself may be boxed. 

The downside of this is that the subscript operation will therefore actually have to do a runtime 
typecase in order to determine the stride of an array of unknown types. Moreover, even when 
the type is known, the subscript operation will be forced to rebox the float before returning it, 
since subscripting into an array of boxed floats returns a value of type Boxedfloat. To avoid this 
problem, we provide a specialized floating point subscript fsub(e,i) which is well typed only when 
its argument is a Boxedfloat array, but which returns a value of type Float. This primitive avoids 
the problems with using the standard polymorphic subscript in cases where the element type is 
statically known to be Boxedfloat, since it need not dispatch on its constructor argument, and since 
it does not need to rebox its return value. 

2.4    Algorithmic typechecking 

In addition to using types for runtime optimization, TILT was also designed with the idea that the 
type annotations can provide a degree of self-checking within the compiler: just as a programmer 
profits from the degree of error checking imposed by the typechecker, so should a compiler. With 
this in mind, a good deal of work went into designing efficient algorithms for typechecking the MIL. 

Modulo the constructor equivalence algorithm which is treated separately in [SH99], the com- 
plete typechecking algorithm for the MIL is presented in appendix A.2. The algorithm is presented 
as an alternative set of typing rules which are intended to express the structure of the algorithm: in 
the few cases where more than one rule might apply the result of a single common premise indicates 
which rule is applicable. The algorithmic judgements are listed in figure 5. The most noticeable 
presentational change is that the constructor and term well-formedness rules have been split into 
synthesis and analysis rules. For the term level, the intension is that the synthesis algorithm cor- 
responds to synthesizing a type for a term: given a well-typed term, the algorithm will return 
its type. In the case of the analysis algorithm the type is an additional argument: the algorithm 
checks that the term argument is well formed at that type. The constructor level algorithms work 
in the same manner, with the additional constraint that the kind returned by the kind synthesis 
algorithm is principal. 



A (= K Well-formed kinds. 
A |= «i ^ «2 Subkinding. 
A |= c JJ. K Kind analysis 
A |= c f|- K Kind synthesis 
A I- C\ = C2 :: K    Constructor equivalence. 
A j= r Well formed type 
A (= e JJ. r Type analysis 
A (= e fr r Type synthesis 
A |= c H-> c' Constructor weak head normal form 

Figure 5: MIL algorithmic judgements 

2.4.1     Selfification 

Unlike the declarative system, the algorithmic MIL has no extensionality rules and no explicit 
self rule. Instead, the base-cases for the kind synthesis algorithm include implicit applications of 
the self-rule. For the most part this is very straightforward: for example, the rule for the Int 
constructor. 

    Int 
A |= Int i\ ST(Int) 

In the variable rule however, it is not necessarily possible to apply the self rule directly, since the 
variable may be bound at a higher kind. For variables, it is necessary to inline implicit applications 
of the extensionality rules as well. This is done in the form of an auxilliary judgement called 
selfification: j= c :: K = K'. 

(= Q :: K = K' 

    Variable 
A [a :: K] (= aft K' 

Selfification takes a constructor and a kind and replaces the abstract components of the kind 
with singletons containing projections from and applications of the constructor. So for example, 
\= a :: S(/3 :: T).T = E(ß :: ST{^I a)).Sj(7r2o). The resulting kind is therefore principal for the 
variable in question. 

It is interesting to note here that there are some apparently arbitrary choices to be made in 
the manner in which selfification is done that are nonetheless significant from an implementation 
standpoint. In particular, the singleton rule could be implemented in either of two ways. 

    Singleton 1 
\= c :: ST(CI) = ST(C) 

Singleton 2 
\=c::ST(d)±ST(d) 

From a theoretical standpoint, either choice gives a correct and equivalent kind. From an imple- 
mentation standpoint however, the first choice which replaces the contents of singletons tends to 
yield smaller kinds. The reason for this is straightforward: since selfification always starts with 
a variable as the constructor argument, the new singletons created via selfification with the re- 
placement strategy always contain only paths which are relatively quite small.   In practice, the 



pre-existing contents of the singletons are often quite large, and are almost never smaller than a 
projection from a variable. 

The rule for the dependent pair kind presents a related choice. It is equally possible to retain 
or eliminate occurrences of the dependent variable in the second kind, since the constructor gives 
us a definition for this variable. 

f= c.l :: Ki = K[    \= c.2 :: {c.l/a}^ = K2 

    Sigma 
f= c :: E(a :: KI).K;2 = S(a :: K'J).«^ 

By choosing to substitute for the free occurrences of the variable, we ensure that selfification never 
generates dependent pair kinds. This property extends naturally through the rest of the kind 
synthesis algorithm: it is possible never to generate dependent pair kinds as the result of kind 
synthesis. This means that the constructor projection rule 

A |= eft S(a :: KI).K2 

    Second projection 
A |= 7T2 C ff {7T! c/a}K2 

need not perform substitution. Eliminating this substitution yields significant efficiency gains. This 
can be further improved by noticing that a side effect of using the replacement strategy for the 
singleton case is that the only place that the dependent variable can occur is in the argument 
decoration of function kinds. Therefore, the notion of substitution can be specialized further to 
avoid the unnecessary traversal of the rest of the kind. 

2.5    Termination Proofs 

In this section, we show the decidability of the typechecking algorithm for the MIL calculus mod- 
ulo constructor equivalence. The decidability of the constructor equivalence algorithm is proved 
separately for the A<ss calculus in [SH99]. This result extends trivially to the full MIL language. 
Note that the decidability of the formal system corresponds to termination of the algorithm. 

In section 2.5.1 the proof of the decidability of sub-kinding is given, followed in section 2.5.2 
by the proof of decidability of the well-formed kind, kind analysis, and kind synthesis judgements. 
All of the proofs follow essentially the same form: 

1. Define a size metric mapping kinds and constructors into the natural numbers (basically 
textual size) 

2. Extend the metric to derivations 

3. Show that the judgements only permit derivations which only use smaller sub-derivations as 
hypotheses. 

4. Observe that an infinite derivation contradicts the well-foundedness of the natural numbers 

2.5.1    Termination of sub-kinding. 

Consider the relation -< on sub-kinding derivations J defined as follows: J\ -< J2 iff J\ is an 
immediate sub-derivation of J2. It suffices to show that the -< relation is well-founded, since if 
there are no infinite descending chains in the relation, then clearly there are no infinite derivations 
(notice that all rules have a finite number of hypotheses).   To show that this is the case, we 



exhibit a mapping SZ which maps derivations to natural numbers, and show that this map is order 
preserving. For notational simplicity, we write SZ(A f= Ki < K2) for SZ(J) where J is a derivation 
the conclusion of which is A (= K\ < K2. 

Definition 1 
SZ(A \= «! ■< K2) = SZ(KI) + S.S(K2), wAere 

S^(K) 

1 if K = T 
1 if K = ST{C) 

SZ{KI) + SZ(K2) if K = E(a :: KI).K2 

S2(KI) + SZ(K2) if K = n(a :: KI).K2 

It is fairly easy to see that SZ is a function (lemma 1). This establishes that SZ serves as a 
metric mapping derivations into the natural numbers. A less obvious result is that SZ preserves 
the ordering -< - that is, that the immediate sub-derivations are always smaller according to the 
metric SZ (lemma 2). Given this lemma, the main result (theorem 1) follows almost immediately. 

Lemma 1 
SZ is a function. 

Proof. It is easy to see that V7c3!n s.t. SZ(K) = n by induction over the structure of K. The lemma 
follows immediately. ■ 

Lemma 2 
SZ is order preserving. That is, 

Ji<J2=> SZ(Ji) < SZ{J2) 

Proof.   The proof proceeds by cases on the last rule used in J2. See appendix A.3.1 for details.   ■ 

Theorem 1 
The algorithm for checking subkinding always terminates. That is, the algorithmic rules for sub- 
kinding do not permit any infinite sequences of rule applications. 

Proof. By the previous lemmas, every derivation has as immediate hypotheses only sub- 
derivations that are strictly smaller according to a well-founded ordering. Therefore, there can be 
no derivations of infinite depth, since such a derivation would correspond to an infinite descending 
chain in the well-founded ordering. ■ 

2.5.2    Termination of the well-formed kind, kind analysis, and kind synthesis algo- 
rithms 

The proof of decidability of the well-formed kind, kind analysis and kind synthesis algorithms 
proceeds in much the same fashion as above. The only significant difference is that the measure 
function for derivations maps into lexicographically ordered pairs of natural numbers. This arises 
because of the form of the kind analysis judgement, and is mostly a technicality: it is easy to see 
that all uses of the single kind analysis rule could be inlined into the other judgements allowing the 
proof to proceed as before. 

We start by defining measure functions which map derivations to pairs of natural numbers 
ordered lexicographically below. These functions are defined as before in terms of inductively 
defined functions szK() and szc(), which act as measures on kinds and constructors, respectively. 

10 



Definition 2 

SZK(K)    = 

szc(c) 

SZ{J) 

1 
szc(c) + 1 
SZK(KI) + SZK(K2) 

SZK(KI) + SZK(K2) 

1 
szc{ci) + szc(c2) 
SZc{C\) + szc(c2) 
szc(c') + l 
szc(c') + SZK(K) 

SZC(CI) + szc{c2) 
szc{ci) + szc(c2) 
szc{c') + l 
szc(ci) +szc(c2) 

(SZK(K), 0) if the 
(szc(c), 1) if the 
(szc(c),0)    if the 

if K = T 

if K = ST(C) 

if K = £(ct :: KI).K2 

if K = n(o' :: Ki).«2 

if c = a, /ni, Boxedfloat 
\fc = n(a,ß).(c1,c2) 
if c= ci x c2,ci ->• c2,ci + c2 

if c = c' array 
if c = Aa::K.c' 
if C = Ci C2 

if c=< ci,c2 > 
ifc = c'.l,c'.2 
if c = let a = c\ in c2 end 

conclusion is A |= K 

conclusion is A \= c |L K 

conclusion is A f= c ff K 

The proof then proceeds almost exactly as in the sub-kinding case, except that there is an 
additional lemma observing that the selfification judgement used by the kind synthesis algorithm 
is also decidable. 

Lemma 3 
SZ is a function. 

Proof.    It suffices to show that szc(), and szK() are well-defined.  This follows by induction over 
the structure of K and c. ■ 

Lemma 4 
The selfification judgement f= c :: K\ = n2 is decidable. 

Proof.   Follows by induction over the structure of K. ■ 

Lemma 5 
SZ is order preserving. That is, 

JX^J2^ 5Z(Ji) < SZ(J2) 

where < is the lexicographic ordering on N x N. 

Proof.   The proof proceeds by cases on the last rule used in J2. See appendix A.3.2 for details.   ■ 

Theorem 2 
The kind synthesis, kind analysis, and kind well-formedness judgements are decidable. 

Proof. By lemma 5, any infinite sequence of rule applications corresponds to an infinite 
descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well- 
foundedness of (N x JV, <). ■ 

11 



2.6    Efficiency concerns with the MIL 

In the previous sections we define a language sufficiently expressive for our purposes and give 
algorithms for checking the well-formedness of terms in this language. This language is very close 
to the original MIL calculus that was first used in the TILT implementation. While sufficient from 
a theoretical perspective, this turns out to suffer from some practical deficiencies. 

An early challenge in the TILT implementation was to keep the size of the compiler intermediate 
forms manageably small. In some cases relatively small programs increased in size dramatically 
when translated into the MIL, and larger programs became simply unmanageable. Surprisingly, 
measurements suggested that a good deal of the program size was due to kinds. 

One of the major reasons for this becomes apparent upon closer inspection of the MIL typing 
rules. Because singleton kinds are restricted to contain only constructors of kind T, constructors of 
higher kind end up being duplicated in their principal kinds. For example, if c is a large constructor 
of kind T x T then principal kind of c is Sj{^i c) x ST{^2 C): the kind is more than twice as large 
as the constructor it classifies. The duplication of constructors in kinds is quite pernicious: since 
structures and functors turn into constructor records and functions, kinds may contain many copies 
of entire structures. This becomes especially bad in the case of nested structures, a common ML 
programming idiom. 

2.6.1     Singletons at higher kinds 

S(c::T) 
S(c::ST(c')) 
S(c::U(a :: KI).K2) 

S(c:iE(a :: Ki).«2) 

ST(c) 
ST(C) 

U(a :: Ki).S(ca::K2) 
£(ct :: S(n\ C::KI)).S(7T2C::K2) 

Figure 6: Definability of singletons at higher kind 

An obvious solution to the constructor duplication problem is to permit the use of singletons at 
higher kind. This is not at all difficult so long as the singletons are labeled with the kind of their 
contents: in fact, as figure 6 shows, this is definable in the original calculus. This allows for kinds 
of the form ST(^I C) X ST{^2C) to be replaced with an equivalent kind of the form S(c::T x T), 
which contains only one copy of the classified constructor. 

In practice however, this solution is not sufficient: kinds still account for too much of the space 
used by the intermediate forms. In this system, the decorations on the singletons themselves now 
occupy a significant amount of the space saved - the kinds used are generally smaller, but there 
are more of them. Moreover, it is hard to systematically avoid the creation of kinds of the form 
S(c::S(c::T)): a perfectly legitimate kind, but not desirable from an efficiency standpoint. 

As a result of these observations, it became clear that what was needed was a system containing 
unlabelled singletons at higher kind: S(c) instead of S(C::K). In such a system, the principal kind 
of a constructor c is always S(c). This kind is both small, and fast to synthesize, but does not 
provide any useful structural information. An attempt to use this kind (for example, to determine 
if a projection from a variable of this kind is well-formed) requires additional work. The system 
with unlabelled singletons introduces a significant measure of type reconstruction into the language 
in addition to that already introduced by the decision to elide classifiers on let bindings. (In fact, 
if we view the binding let a :: K = Ci in c? end as syntactic sugar for AOJ::5(CI::K).C2 [SH99], then 

12 



it becomes clear that eliding the classifier on let bindings is merely a special usage of unlabelled 
singletons: i.e. let a = ci in c2 end corresponds to Aa::5(ci).c2.) 

Because of this additional burden of type reconstruction, it is not immediately clear that the 
language with unlabelled singletons is decidable: unlike labelled singletons, there is no simple 
inductive definition that tells what the corresponding simple singleton kind is. The next section 
defines a language with unlabelled singletons, presents an algorithm for typechecking, and proves 
its decidability. 

3    NIL (Extended MIL) 

The relatively simple core calculus described above is sufficient from the standpoint of serving as a 
target language for the elaboration phase. However, from the standpoint of efficient implementation, 
it is somewhat deficient. This section describes the extension of the MIL language to permit 
unlabelled singletons at higher kinds. For clarity, we use the term NIL to describe this extended 
calculus. 

3.1    Syntax 

k   ::=   S{c)\T\ST{c)\i:{a::k).k\E{a::k).k 

c   ::=    ... | Xar.k.c 

t    ::=   T(c)\(a:: k,x:t)-^t\ Float 

| t x t | let a = c in t end 

p   ::=   a \ p.l \ p.2 | pc 

e    ::=   x | let x = e in e end | let a = cine end 

| rec / = \(a::k, x : T) : r.e 

| e[c]e |< e, e >| e.l | e.2 | n | r | boxfloat(e) | unboxfloat(e) 

| inlCiCe | inrc>ce | caseTeof {inl(x) =$ e,inr(x) =$> e} 

| rollc(e) | unroll(e) | projt(e) 

| arrayc(e,e) | sub[c](e,e) | fsub(e,e) 

A    ::=   »| A[x : r] | A[O:::K] 

Figure 7: NIL Syntax 

The syntax for the NIL language is given in figure 7: the only change from the MIL is the addition 
of the unlabelled singleton, S(c). For the sake of clarity, we write kinds in this extended calculus 
as k instead of K, which we reserve for the core calculus. 
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There are two points of importance to the extended system that are already evident in the 
syntax. The first is that the addition of unlabelled singletons does not replace the core singleton 
at kind T: the original singleton form is still present in syntax. The second point is that typing 
contexts are restricted to contain kinds K from the core calculus only: there are no unlabelled 
singletons allowed in the context. These two facts are the key to making the algorithm terminate. 

3.2    Algorithmic judgments 

New judgements 
A |= k\n Kind standardization 
A f= c\c' Constructor standardization 

New versions of old judgements 
A |= k Well-formed kinds. 
A (= c ij- K Kind analysis 
A j= c i\ K Principal kind synthesis 
A (= T Well formed type 
A |= e JJ. T Type analysis 
A (= e ff T Type synthesis 

Unchanged 
A ok Well-formed context 
A. \= Ki < K2 Subkinding. 
A h C\ = C2 :: K Constructor equivalence. 

Figure 8: Nil declarative judgements 

The judgements used to define the NIL typechecking algorithm are listed in figure 8, and are 
described in full in appendix B.l. The major change is the addition of two new judgements: 
kind standardization and constructor standardization. We call a kind standard if it contains no 
occurrences of unlabelled singletons. A constructor is standard if it contains only standard kinds. 
Notice that every standard kind is a MIL kind. These new judgements implement the process of 
putting a kind or constructor into standard form. 

The kind standardization algorithm traverses compositionally over the structure of kinds until it 
reaches a singleton type. In the case that the singleton is not standard it is necessary to reconstruct 
the principal standard kind by calling the kind synthesis algorithm on the constructor. 

A j= eft K 
    Singleton Any 

A \= S{C)\K 

If the singleton is already standard, all that remains to be done is to standardize the constructor. 

A (= c\c' 
Singleton Type 

A \= ST(C)\ST(C') 

The labelled singleton is important here: it provides a way of marking singletons which do not 
require further type reconstruction efforts. 
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Notice that the kind synthesis algorithm is designed to synthesize standard kinds for non- 
standard constructors. This mixing of the two systems is important for a number of reasons, but 
here we see how it comes into play during kind standardization: if kind synthesis returned non- 
standard kinds we would not have made progress here. This intertwining of the two systems is 
essential to the algorithm. 

The constructor standardization algorithm is straightforward: it simply traverses the construc- 
tor, standardizing any kinds that it finds. 

A\=k\n   A[a::K] \= c\c' 
    Lambda 

A (= Xa::k.c\Xa::K.c' 

It is also possible to generalize the system slightly by using an intermediate form wherein non- 
standard constructors are allowed inside of standard singletons so that constructor standardization 
is no longer necessary. This is a relatively straightforward extension, and for the sake of brevity we 
do not elaborate on it here. 

The kind synthesis algorithm now proceeds much as before, but with additional calls to the kind 
standardization algorithm where necessary to preserve the property that all kinds in the context 
are standard. 

A (= k A |= k\K 
A[a::K] f= c ft K'   a <£ Dom(A) 
 :    Lambda 

A \= Xav.k.c ft U(a :: K).K' 

In the variable rule we can see the importance of this property. 

|= a :: K = K' 
    Variable 

A[a:-.K] \= a ft n' 

Because the contents of the context are already standard, it is not necessary to call back to the 
kind-standardization algorithm here. Much as with labelled singletons in the kind standardization 
algorithm, this gives the algorithm a place to stop. 

The fact that the kind synthesis algorithm returns standard kinds is also important internally 
to the algorithm in cases where it must inspect kinds. In the projection rule, the fact that the kind 
returned is standard means that the only possible form for the kind of the constructor is that of a 
pair, and hence no further work need be done to determine if the projection is well formed. 

A \= cit~£(a :: KI).K2 

    First projection 
A |= 7Ti C ft K! 

The rest of the judgements change from the MIL only in minor ways: either additional cases to 
handle the new construct, or additional calls to kind standardization where needed. Interestingly, 
the subkinding and constructor equivalence algorithms carry over intact to the new system: it 
naturally falls out that the only calls to these algorithms are made with standardized arguments. 

3.3    Soundness and Completeness 

It is important for the purposes of the compiler that the extended system be complete with respect 
to the core system: that is, that all programs which could be typechecked in the core system can 
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still be typechecked in the extended system.   This property holds, as stated in theorem 3.   The 
proof of this theorem follows almost trivially, since the NIL is a syntactic superset of the MIL and 
since the well-formedness judgements of the NIL closely parallel those of the MIL. For clarity in 
the statement of the theorems, we write the NIL well-formedness judgements with a superscripted 

+ 
turnstyle, as such: (=. 

Theorem 3 (Completeness) 
The extended system is complete with respect to the core system. 

+ 
1. if A ok and A |= K, then A (= K. 

+ 
2. if A ok and A |= c ft K, then A (= c ft K. 

Proof. First observe that every MIL kind is a syntactically valid standard NIL kind. Then 
observe that the kind standardization algorithm is the identity on standard kinds. The proof then 
follows easily by induction over the structure of typing derivations. ■ 

While completeness is the most important property, it is desirable that the system be sound with 
respect to the core system as well: that is, that it does not allow us to typecheck more programs 
than before. Theorem 4 states this property. The proof of this theorem is less obvious, but not 
significantly more difficult. 

Theorem 4 (Soundness) 
The extended system is sound with respect to the core system. 

+ 
1. if A ok and A |= k then there exists a K such that A f= k\n and A f= K 

+ 
2. if A ok and A (= c ft K then there exists a c' such that A f= c\c' and A (= d ft K 

Proof.    By induction over the structure of typing derivations ■ 
These two basic theorems show that from a theoretical standpoint the NIL is a sensible extension 

of the MIL. The next section will show that in addition to being sound and complete with respect 
to the core system, the extended system is also decidable. This is the last and in some ways the 
most important property that the extended system must hold. 

3.4    Termination Proofs 

The proof of decidability of the extended system proceeds much as with the core system, defining 
measure functions which map derivations to pairs of natural numbers ordered lexicographically and 
using these to argue that the system is well-founded. 

Definition 3 

szk{k)   =    < 

1 \ik = T 
szc(c) + 1 if k = ST(C) 

szc{c) + l if i= 5(c) 
s%(£i) + szk{k2) if k. = S(Q :: kx).k2 

szkiki) + szkikz) if£= n(a ::k1).k2 
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r l 

szc(c)    =    1 

SZ(J)   =    { 

szc(ci) + szc(c2) 
szc(ci) + szc(c2) 
szc{c') + 1 
szc(d) + szk_(k) 
szc(ci) + szc(c2) 
szc(ci) + szc(c2) 
szc(c') + 1 
szc{ci) + szc(c2) 

(szk(k),0) if the 
(szc(c),0) if the 
{szk(k),0) if the 
(s2c(c), 1) if the 
(szc{c),0) if the 

if c = a, Int, Boxedfloat 
ifc = /i(a,/?).(ci,c2) 
if c = C\ x c2, ex -» c2, cj + c2 

if c = d array 
if c = Aa::fc.c' 
if C = Ci C2 
if c=< ci,c2 > 
ifc = c'.l,c'.2 
if c = let a — ci in c2 end 

conclusion is A |= k\n 
conclusion is A \= c\d 
conclusion is A |= k 
conclusion is A (= c JJ. K 

conclusion is A (= c ff K 

As before, we argue that the measure is a well-defined function. Note that the selfification result 
of lemma 4 still holds, since selfification is only performed on standard kinds. 

Lemma 6 
SZ is a function. 

Proof. It suffices to show that szc(), and SZJJ) are well-defined. This follows by induction over 
the structure of k and c. ■ 

Lemma 7 
SZ is order preserving. That is, 

JX<J2^ SZ{JX) < SZ(J2) 

where < is the lexicographic ordering on N X N. 

Proof.   The proof proceeds by cases on the last rule used in J2. See appendix B.2.1 for details.   ■ 
The main result then follows easily as before. 

Theorem 5 
The kind standardization, constructor standardization, kind synthesis, kind analysis, and kind 
well-formedness judgements are decidable. 

Proof. By lemma 7, any infinite sequence of rule applications corresponds to an infinite 
descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well- 
foundedness of (N x N,<). m 

4    Conclusion 

This paper presents a language very close to that actually used in the internals of the TILT compiler: 
a language whose design was driven not by the usual concerns of programer usability, but by the 
new concern of compiler usability. This difference in purpose leads to very different concerns 
than those normally encountered by language designers. We have discussed here some of the 
more important design decisions resulting from this in the original core calculus, and we have also 
described the extension of the calculus to allow unlabelled singletons for the purpose of providing 
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compact representations of internal forms.   This extension has been shown sound and complete, 
and decidable. 

The work described here was a key part of making the TILT compiler run efficiently, and well. 
It is of particular interest because it presents a theoretical approach to solving a practical problem. 
This is indicative of the overall design philosophy of the TILT project: that a systematic and 
theoretically sound approach to practical problems provides significant engineering benefits. The 
use of a new language construct (unlabelled singletons) to achieve an engineering goal (better space 
efficiency) is an excellent example of how this can work. 
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A    MIL 

A.l    Declarative judgements 

Well Formed Context 

    Empty 
i ok 

A ok   Ah«   a £ Dom(A) 
Kind 

A[ct::K]ok 

A ok 

A ok   Ah T   x £ Dom(A) 

A[x : r] ok 
Type 

Well Formed Kind 

A ok 
    Type 
AhT 

AhK 

Ahc::T 

A h ST(c) 
Singleton 

AHKI    A[a::Kj] h «2 

A h n(a :: KI).K2 

A h K\    A[a::«i] h «2 

A h E(a :: Ki).«2 

Pi 

Sigma 

Sub-Kinding 

A ok 

AhT^r 
Type 

A h K\ < K2 

A h 5T(c) 

A h 5r(c) ^ T 
SingletonL 
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Ahc = d::T 
Singletons 

A H ST(c) ± ST{d) 

A I- K[ < K\ A[a::Ki] h/c2^ K2 

A h II(a :: K^).^ < ü(a :: Ki).«'2 

A h KI ^ K': A[Q'::KI] I- K2 :< K2 

A h S(a :: KI).K2 d 
s(a':: «i)-«2 

Well formed constructor 

A ok 
    Variable 

Pi 

Sigma 

A h- c :: K 

A h ö :: A(a) 

A ok 

A I- BoxFloat :: T 
BoxFloat 

A ok 

A h Int :: T 
Int 

A[a::T][ß::T] h Cl :: T   A[a::T][/?::T] h c2 :: T 

Ah/f(Q,/3).(c1,c2)::T 

A h ci :: T   A h c2 :: T 

Mu 

A h d X c2 :: T 

A h ci :: T   A h c2 :: T 

A h ci -> c2 :: T 

A h ci :: T   A h c2 :: T 

A h cj + c2 :: T 

A h cj :: T   A h c2 :: T 

Ahci+t'c2::T 

Pair 

Arrow 

Sum 

KnownSum 

Ar-c::T 

A h c arrat/ :: T 
Array 
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A H K   A[a::K] h c :: K' 
    Lambda 
A h A (a :: K).C :: n(a :: K).K' 

A h CI :: U(a :: KI).K2    A h c2 :: K\ 

A h cj c2 :: {c2/a}K2 

A h cj :: KJ    A h c2 :: K2 

App 

A h (ci,C2) :: «i x K2 

A h c :: E(a :: KJ).K2 

Record 

A h c.l :: KI 

A h c :: E(a :: KI).K2 

Projl 

Proj2 
A h c.2 :: {c.l/a}n2 

A h ci :: «i    A[a::«i] h c2 :: K2 

A h let a = CI in c2 end :: {ci/a}K2 

A h c :: T 
    Selfify 

Let 

Ahc::ST(c) 

Ahc::n    A h K X K' 
Subkind 

A h c :: K' 

A h c :: E(a :: KI).K2   A h c.l :: K[ 

Ah c::E(a :: K[).K2 

A \-c :: Y,(a :: KI).K2   A h c.2 :: K'2 

A h c :: «i X K2 

A h c :: II(a :: «I).K2   A[a::«i] h ca :: K2 

A h c :: n(a :: K^)./^ 

21 

Sigma Extl 

Sigma Ext2 

Pi Ext 



Well-formed Type 

A\-c::T 

A h T{c) 
Constructor 

Ah 

A h K   A[Q::K] h TX    A[Q::K] h r2 

A h (a :: K,TI) -» r2 

Arrow 

A ok 

A h F/oa/ 
Float 

A h Ti    A h r2 

A h T! x r2 

Float 

A r- c :: Kj    A[a::Kj] I- r 

A h let a = c in r end 

Well-typed term 

A ok 

Let 

Aha;: A(.r) 
Variable 

LetE 
A h ex  : rx    A[x : ri] h e2 : r2 

A h let x = e\ in e2 end : r2 

A h c :: K    A[Q::K] \- e : T 

A H let a = c in e end : let a = c in r end 

A h e : r 

LetC 

A h K    A[a::/t] h rt A[Q::K] h r2 

A[/ : (a :: K,TI) -> r2][a::«;][x : n] h e : r2 

A h rec/= A(Q::K,X : ri) : r2.e :  (a :: K, TJ) —>• r2 

Rec 

A h ei  : (a :: K,TI) -> T2    A h C :: K 

A h e2  : {c/a}rj 

Ar-ei[c]e2 : {c/a}T2 

App 

A I- ei  : ri    A h e2  : r2 

Ah <ei,e2) : ri x r2 

Pair 
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A h e : T\ X r2 
    Projl 
Ahe.l : TI 

A h e : T\ X r2 
    Proj2 
Ahe.2 : r2 

A ok 
    Float 
A h r : F/oai 

A ok 
    Int 
Ahn: r(J^) 

A h e : F/oat 

Ahboxfloat(e)  : T(BoxFloat) 

A h e : BoxFloat 

Box 

A h unboxfloat(e) : Float 
Unbox 

A h e : T{Cl + c2) 
A [a: : T(Cl +

1 c2)] h ei  : r    A[z : T(Cl +
2 c2)] h e2  : r 

A h caser eof {inl(:r) => ei,inr(a:) => e2} : r 
Sumswitch 

A h ci :: T A h c2 :: T 
A he : T(Cl) 

A hinlCliC2e : T(ci + c2) 

A h ci :: T A h c2 :: T 
A h e : F(c2) 

A h inrCl,C2e : T(ci + c2) 

inl 

inr 

Ahc::T A h c = n{a,ß).{cuc2).i:: T 
A he : T({c.l,c.2/a,/?}c,-) 

A h rollc(e) : F(c) 

Ahe:r   A h r = T{fi(a, ß).{cu c2).i) 

Ahunroll(e) : T{{n{a,ß).(c1,c2).l,fi{a,ß).{chc2).2/a,ß}ci) 

Ahe:r   A h r = T{cx +' c2) 

roll 

unroll 

proj 
A h proj,.(c) : T{a) 
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A hei  : Int     A\-c::T 
Ahe2: T{c) 

Ah array, (ei, 
arraj 

e2)  : T(c array) 

Ah e\  : T(c array)    A h e2 : T(Int) 
sub 

Ah sub[e!](e2 ) : T(c) 

Ah t\  : T(BoxFloat array) Ahe2 : T(Int) 
fsub 

A hfsub(ei,e2) : Float 

A.2    Algorithmic judgements 

Well Formed Kind I A (= K 

A \=T 

A\=c$T 
Singleton 

A |= ST(c) 

A (= «!    A [a ::KX] |= K2 

A |= II(a :: «i )-«2 

A h^ Ki    A [a ::«i] N *2 

A (= E(a :: KI).K2 

Pi 

Sigma 

Sub-Kinding A (= K\ ■< K2 

Assume that A, K\ and K2 are well-formed. Check that Ki is a subkind of K2. 

    Type 
A \=T <T 

Singleton 
A |= ST(c) < T 

A \=c=d::T 
Singletons 

A |= ST{c) < ST(d) 

A \= K[ < Ki    A [a :: K[] (= K2 < K'2   a $. Dom(A) 

A |= Il(a :: KI).K2 ^ ü(a :: «i).^ 

A |= Ki ^ K'X    A[Q- :: Ki] |= K2 ■< K'2   a $. Dom(A) 

A (= E(a :: /CI).K2 ^ S(a :: KI).K2 
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Selfiflcation j= c :: K = K' 

Assume c and K are well-formed with respect to some context. Return the most precise kind of c. 
Intuitively, this is the definition of a singleton at the higher kind. 

Type 
\= c :: T = ST(c) 

\=c::ST(d) = ST(c) 

\= ca :: K2 = K'2 

Singleton 

Pi 
|= c :: n(a :: KI).K2 = U(a :: KI).K'2 

\= c.l :: Ki = K[    \= c.2 :: {C.1/G;}K2 = K'2 

|= c :: S(a :: KI).K2 — S(a :: K'J.KJ 

Sigma 

Kind Analysis A (= c Jj. K 

Assume A and K are well formed. Check that c is well formed and can be given kind K. 

A\=ci\Kf   A\=K' <K 

A \= ci}- K 

Analysis 

Kind Synthesis A (= cff K 

Assumes that A is well-formed. Check that c is well-kinded, and construct K s.t. A (= K and c has 
kind K. 

j= a :: K = K' 

A [a :: K] (= aft K' 

Variable 

A |= BoxFloat ft Sj(BoxFloat) 

    Int 

BoxFloat 

A \= Int ft 5T(/nO 

A[a::Tp::T] (= T ^   A[a::r][/3::T] ^ T ij,   a, ß $ Dom(A) 

A [= ^(a,/3).(ci,c2) fr ST{n{<*,ß).{cu c2).l) x ST(/i(a,/J).(Cl,c2).2) 
Mu 

A^ciJ^T   A^c2JJT 

A (=ci x c2fr5T(ci xc2) 
pair 
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Su m 

KnownSum 

    Arrow 
A l=ci -+c2ft5T(ci ->c2) 

A |= ci ^ T   A^=c2^T 

A |= cj + c2 ft ST(ci + c2) 

A\=Cl^T   A\=c2^T 

A(=ci+«'c2ftSr(ci+,'c2) 

A^cJjT 
    Array 
A (= c array ft Sj(c array) 

A (= K   A[cv :: K] [= c fr K'   a £ Dom (A) 

A (= Aa::K.cft n(a :: K).K' 

A (= ci f|- Il(a :: /q).^    A j= c2 Jj. /q 

Lambda 

A [= ci c2 ft {c2/a}K2 

A |= Ci ft Kj    A f= c2 ft K2 

App 

A (= (ci,c2) ft«i x K2 

A |= eft E(a :: KI).K2 

Record 

A hclftKi 

A (= eft E(a :: «I).K2 

Projl 

Proj2 
A ^c.2ft{c.l/a}K2 

A f= ci ft Ki    A [a :: KJ] (= c2 ft K2    a £ Dom(A) 

A f= let ct = cj in c2 end ft {ci/a}«;2 

Let 

Well-formed Type A (= r 

Assume A is well-formed. Check that r is well-formed. 

A\=cl±T 
    Constructor 

A |= T(c) 
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A\= K a £ Dom(A) 
A[a::«] |= n    A[a::/s] \= r2     Arrowiype 
A |= (aiiK.Ti) -4r2 

    Float 
A |= Float 

A\=n   A\=T2 

PairType 
A (= 7"i X T2 

A(=cf|-Ki    A[a::Ki] (= r   a £ Dom (A) 

A |= let a = c in r end 
Let 

Type Analysis A (= e JJ. r 

Assume A and r are well-formed. Check that e is well-typed, and has type r. 

A |= e ft r'   A|= r' = r 
    Analysis 

A \=e\j-r 

Type Synthesis A |= e ft r 

Assume A is well-formed. Check that e is well-formed and construct its type r, where A |= r 

    Variable 
A [a; : r] |= x ft r 

A |= ei ft ri    A[x : rx] |= e2 ft r2   s £ Dom(A) 

A (= let £ = ei in e2 end ft r2 

A|=cft/s   A[a::K] f= e ft r   a £ Dom(A) 

lete 

A (= let a = c in e end ft let a = c in r end 
letc 

A(=K   A[a::/e] (= n    A[a::«;] |= r2 

A[/ : (a :: K, rx) ->■ r2][a::«;][a; : n] (= e JJ. r2    /, x, a £ Dom(A)) 
rec 

A |= rec / = A(CK::K, x :T{) : r2.e ft (a :: K, ri) -> r2 

A |= ei ft (a :: K, ri) -4- r2   A |= ci+i JJ. {c/a }K,-+I    A |= e2 JJ. {cn/ä"}ri 

A [= ei [c]e2 ft let a = c in T2 end 

A^eiftr   A\=T^ Tfa -> c2)    A |= e2 J> T(ci) 

A^eiDe2ftr(c2) 
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A |= ei ft 7-1    A |= e2 ft r2 
    pair 
A (= (ei,e2) ftn x r2 

A(=eftr   A (= A H T7) x r2 

A \= e.l ft Ti 

A|=eftr   A (= T 4 TJ x T2 

type_projl 

A |= e.2 ft r2 

    Float 

type_proj2 

A (= r ft F/oa£ 

    int 
A |= n ft T(7ni) 

A f= e 4J. F/oa* 

A |= boxfloat(e) ft T{BoxFloat) 

A |= e J| T(BoxFloat) 

box 

A )= unboxfloat(e) ft F/octf 
unbox 

A h c ft re A^re4 T(a + c2)        A |= r 
A[x : d +1 c2] (= ex (l r    A[.t : ci +2 c2] \= e2 ty T 

__    sumswitch 
A |= caseT eof {inl(a;) => ei,inr(a;) =>■ e2} ft n 

A |= ci J| T        A ^ c2 J| T 
A|=e^T(Cl) 

A f= inlCliC2e ft T(ci + c2) 

A^c^T          Ahc2llT 
AN^ F(c2)  

A |= inrCl)C2eftT(ci + c2) 

inl 

inr 

Af=c^T A|=d->//(a,/?).(ci,c2).tr 
A f=e^T({c.l,c.2/a,/?}<:,■) ^ 

A[=rollc(e)ftr(c) 

A^eftr   A^r^T^l«,/?).^,^).?) 

A |= unroll(e) ft F({/i(a, ß).{cu c2).l, /x(a, /?).(Cl, c2).2/a, /?}c,-) 
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A ^ e ft r   Af=TH-> r(cx +«" c2) 

A ^proj^e) ft T(ci) 

A^e1\^T{Int)   A(=cJ)T 
A [= e2 J| T(c) 

proj 

array 
A |= arrayc(ei, e2) ft T(c array) 

A |= ei ft]r   A |= r h-)- T(c' array)   A |= e2 J) Int 

A |= ex -U- T{BoxFloat array)    A |= e2 ij. T(Int) 

A |= fsub(ei,e2) ft Float 

sub 

fsub 

Natural Kind Extraction 

Assumes that A and p are well-formed. Returns the unselfified kind of p. 

    Variable 

A[Q::K] |= a~» n 

A \= p~» S(a :: KI).K2 

    Projl 

A (= p~> K 

A   |= p.l "N-*  Kj 

A |= p~» £(a :: KI).K2 

A f=p.2~> {p.l/a}K2 

A \= p^ II (a :: «I).K2 

A |= pc~> {C/O}K2 

Proj2 

App 

Weak Head Beta Short Form 

A (= c\ M- Aa :: K.CI    A |= {c2/of}c! *-> c 

A f= ci c2 <->■ c 

A ^=c->(ci,c2)   A^=ci^ci 
    Projl 

A |= c.l <-»• c'x 

A |= c <-»■ (c1; c2)   A (= c2 <-)• c'2 

A [= c ^ c' 

App 

A |= c.2 ^ c'2 

Proj2 
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A |= {c1/a}c2 <->■ c 

A (= let a = ci in c2 end <-> c 

    Otherwise 

Let 

Constructor Weak Head Normal Form 

Assumes that A and c are well-formed. Returns the head normal form of c. 

A\=c^p   A\=p~ ST{c')   A f= c' .-> c" 

A |= c H> c' 

At=c^c" 

A(=c^p   A|=PMK   K^ 5r(c') 

A [= C4 p 

Pathequation 

Pathnoequation 

A |= c «->■ c'    c' not a path 
NonPath 

A (= c i->- c' 

Type Weak Head Normal Form 

A |= {c/a}r i-> r' 

A |= let Q = c in r end i-» r' 

A |= c i-> ci x c2 

A h= T(c) ^ T(Cl) x T(c2) 

A (= c i-^ c' 
    Inclusion 

A |= r (->■ r' 

Let 

Con pair 

A |= T(c) .-+ r(c') 

    Otherwise 
A [= r i-> T 

A.3    Termination Proofs 

A.3.1    Proof of Lemma 2 

To show: SZ is order preserving. That is, J± ^ J2=$> SZ{J{) < SZ(J2) 
Proof.   We proceed by cases on the conclusion of J2. 

1. A (= T < T. Vacuously true: J2 is minimal, and hence has nothing smaller than it. 

2. A |= ST(C) ■< T. Vacuously true: J2 is again minimal. 
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3. A |= ST(C) ■< Sx{d). The rule for this judgement has no sub-kinding derivations, and hence 
has nothing smaller than it. The only subgoal is an equivalence derivation, which has been 
shown to be decidable separately [SH99]. 

4. A |= n(ev :: KX).K2 di n(a :: 'K\).K2- Suppose Jx -< J2. From the subkinding rule for the II 
kind, we see that there are two possibilities for the conclusion of J\: 

(a) A |= K[ ■< Ki 

SZ(Ji)   =   szfa'i) + SZ(KI) 

< S2(Ki) + SZ(KI) + SZ(K'2) + SZ(K2) 

=   SZ(J2) 

(b) A[a::«i] \= K2 < K'2 

SZ(JI)   =   SZ(K2) + SZ(K2) 

< SZ(K[) + SZ(KI) + SZ(K2) + SZ(K2) 

=   SZ(J2) 

5. A |= S(a :: K\).K2 ■< E(a :: K'^.K^. Suppose J\ -< J2. From the subkinding rule for the S 
kind, we see that there are two possibilities for the conclusion of J\: 

(a) A |= K\ < K[ . 

SZ{Ji)   =   SZ(K[) + SZ(KI) 

< SZ(K'1) + SZ(KI) + SZ(K'2) + SZ(K2) 

=   5Z(J2) 

(b) A[a::Ki] |= K2 ^ K2. 

SZ(JI)   =   SZ(K2) + SZ(K2) 

< szln^) + SZ(KI) + SZ(K'2) + sz(n2) 

=   SZ{J2) 

A.3.2    Proof of Lemma 5 

To show: SZ is order preserving. That is, Ji -< J2 => SZ(J\) < SZ{J2) where < is the lexicographic 
ordering on JV x JV. 

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each 
immediate subderivation is strictly smaller according to the given metric. We ignore subderivations 
that correspond to judgements which are independently known to be decidable, such as subkinding 
and constructor equivalence. Technically, this may be viewed as using the constant measure that 
always returns zero for these judgements. 

1. Well Formed Kind A (= K We proceed by subcases on the form of K. 

(a) T No premises. 
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(b) ST(c) 

SZ(A^c^T)   = (szc(c),l) 

< (szc(c) +1,0) 

= SZ(A^ST(c)) 

(c) I1(KI :: K2). 

i. 

SZ(A^Kl)   = (szK(Kl),0) 

< (SZK(K!)+ SZK(K2),0) 

= 5Z(A^n(Q::K1).K2) 

ii. 

5Z(A[Q::K1] (= K2)    =    (SZK(K2),0) 

< {SZK(KI) + SZK(K2),0) 

=   5Z(A(=n(a::Ki).K2) 
(d) E(KI::K2). 

i. 
SZ(A |= Ki)     =      (S2K(K!),0) 

< (SZK(KX) + SZK(K2),0) 

=   SZ(A |=S(Q■::«!).K2) 

ii. 

5Z(A[O::K!] |= K2)   = (SZK(K2),0) 

< {SZK(KI) + SZK(K2),0) 

= SZ{A\=E(a::Kl).K2) 

2. Kind Analysis A (= c JJ. K. 

5Z(A(=C^K') = (s*c(c),0) 

< (*«c(c),l) 

=   SZ(A|=C^K) 

3. Kind Synthesis A f= c ft K 

Variable By lemma 4 

BoxFloat No premises 

Int No premises 

Mu 

(a) 

SZ(A[a::T,ß::T]^Cl^T)   = (wc(Cl),l) 

< (s^c(ci) + s2c(c2),0) 

= (szc(/*(a,/?).(ci,c2)),0) 

= 5Z(A|=/i(o,/3).(Cl,c2)ft«) 
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where K = ST(ß(a,ß)\cx,c2).l) x ST{^{a,ß).(ci,c2).2). 

(b) Similar 

Pair 

(a) 

SZ(A\=caT)   =   (szc(Cl),l) 
<     (S2C(C!)+S2:C(C2),0) 

=   (szc(c1xc2),0) 

=   SZ(A^Clxc2frST(ciXc2)) 
(b) Similarly for the second premise. 

Arrow As with the Pair case. 

Sum As with the Pair case. 

Array 

SZ(A\=c$T)   =    (szc(c),l) 

< {szc(c) +1,0) 

=    (szc(c array), 0) 

=   SZ(A |= c array -ft ST(C array)) 

Lambda 

(a) 
SZ(A\=K)   = (szK(K),0) 

< (SZK(K) + SZC(C),0) 

= (szc(\a::n.c),0) 

= SZ{A \= Xar.K.c i\ U{a :: K).K') 

(b) 

App 

(a) 

(b) 

SZ(A[a :: K] (= c ft «')   = {szc{c),0) 

< (SZK(K) + SZC(C),0) 

= (szc(\a::K.c), 0) 

= 5Z(A |= Aa::K.cfrn(a::K).K') 

5Z(A ^ Cl fr n(a :: KX).K2)    = (wrc(Cl),0) 

< {szc(ci) + szc(c2),0) 

= {szc(c1c2),0) 

= SZ(A h ci c2 fr {C2/<*}K2) 

SZ(Af= C2^Ki)    = (szc(c2),l) 

< (s2c(ci) + szc(c2),0) 

= (s«c(cic2),0) 

= SZ(A (= ci c2 fr {c2/a}«2) 
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Record 

(b) 

SZ{A^Cli\Kl)   = (szc(Cl),0) 

< (S2C(C1) + S2C(C2),0) 

= {,szc(< ci,c2 >),0) 

= SZ{A (=< ci,c2 >ft«i x K2) 

SZ(A^c2ftK2)    = (szc(c2),0) 

< (s^c(ci) + szc(c2),0) 

= (s2c(< ci,c2 >),0) 

= SZ(A |=< d,c2 >fr Ki x K2) 

Projl 

5Z(At=cftE(a::K1).K2)    =    (s2c(c),0) 

<    (s*c(c) + l,0) 

=     (S2c(c.l),0) 

=      SZ^^Cl^) 

Proj2 As with Projl 

Let 

(a) 

5Z(A(=C1^K1)   =    (^c(ci),0) 

<    {szc(ci) + szc{c2),0) 

=    (szc(let a = Ci inc2end), 0) 

=   5Z(A |= let Q = ci in c2 end ft {ci/a}n2) 

(b) 

5Z(A[a :: Kl) \= c2 ft n2)    = (szc{c2),0) 

< {szc(ci) + szc(c2),0) 

= (szc(let a — c\ inc2end),0) 

= 5Z(A (= let a = cj inc2end f)-{ci/a}«;2) 

B    NIL (Extended MIL) 

B.l    Algorithmic judgments 

Kind Standardization 

    Type 
A \=T\T 

A \=k\K 
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A |= c\c' 

A |= ST(C)\ST(C') 

Singleton Type 

A |= cffK 

A |= S(c)\n 
Singleton Any 

A |= ki\K\    A[a::/«i] (= fc2\
K2 

A |= II (a :: fc1).fc2\II(a :: KI).K2 

A |= ^.i\«i    A[a::«i] |= k2\K2 

A (= E(a :: fc1).^2\S(a :: «i)-«2 

Pi 

Sigma 

Constructor standardization A (= c\c' 

All cases proceed compositionally over the structure of the constructors except for the following 
cases: 

A |= k\n   A[CC::K] |= C\C' 

A j= \a::k.c\\a::K.c' 
Lambda 

A |= ci\ci A |= Cl ff K 

A[a:-.K] |= c2\c'2 

A (= let a — c\ in c2 end\let a = c'x in c2 end 
Let 

Type standardization 

A |= cV 
Constructor 

A |= T(c)\T(c') 

A \=k\n 
A[a::n][x : n] \= t2\r2 

A[U::K] |= ti\ri 

A f= (a :: k, x : t\) -> i2\(a :: K, ri) ->■ r2 

    Float 

Arrow 

A |= Float\Float 

A \=t\r 

A\=h\n   A^^2\r2 

A (= ti x t2\n x r2 
Pair 
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Well Formed Kind 

The Type and Singleton Type rules are as before. 

A(=c^T 
Singleton Any 

A \=k 

A h S(c) 

A[a::«i] |= k2 

A\=Il(<*::k1).k3 

Pi 

A^^j A[=fci\Ki 
A[O::KI] |= k2 
    Sigma 

Sub-Kinding A (= KX ^ K2 

We do not need to redefine subkinding for the extended NIL - all queries will be restricted to core 
syntax. 

Kind Analysis A |= c J) K 

Note that we restrict this judgement to core kinds. Assume A and K are well formed. Check that 
c is well formed and can be given kind k. 

A\=cf[ K'    A|=K'^AC 
    Analysis 

A ^=clj.K 

Kind Synthesis A |= c ff k 

Assumes that A is well-formed. Check that c is well-kinded, and construct K s.t. A |= K and c has 
kind K. 

(= a :: K = K' 
    Variable 

A [a :: K]\= aft K' 

    BoxFloat 
A |= BoxFloat ff ST{BoxFloat) 

    Int 
A (= Int it ST{Int) 

A[a::T][ß::T] \= cx Jj T   A[a::T][ß::T] \=c2\±T 
A[a::T][ß::T] f= Cl\ci      A[a::T][ß::T] (= c2\c'2     a, b <£ Dom(A) 

A \=fi(a,ß).(Cl,c2) itST^(a,ß).(c[,c'2).l) x ST(n(a,ß).(c[,c2).2) 
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A(=C] 

Vi 
A |= c2 ty T 
A |= c2V2 

A (= c L X C2 fr 5TKXC2) 

A (=c 
A ^c A4 

A ^ c2 U T 
A f= c2\c'2 

A f= c l ->C; 2frST«-+c2) 

A |= c 
A^c 

A\=c2^T 
A |= c2\c'2 

A^c 1 + C2 ftSr(ci + c2) 

A(=c ^r A \= c\c' 

Pair 

Arrow 

Sum 

Array 
A (= c array ft ST(C' array) 

A\=k A \= k\n 
A [a :: K] |= c fr K'   a ^ Dom(A) 

A |= Aa::£.cfr II(a :: K).K' 

Lambda 

A |= ci fill (a :: KI).K2   A |= C2 Jj-KI 

A (= c2\c'2 

A (= ci c2 ff {c2/a}«2 

A |= a fr Kj    A |= c2 fr K2 

A (=< Ci,C2 >fr Kl  X K2 

A |= cfr S(a :: «I).K2 

    Projl 

App 

Record 

A f= c.ifr KI 

A |= c1>E(a :: K!).K2   A \= c\c' 

A \= c.2 fr {c'.l/a}K2 

Proj2 

A (= C! fr «iA[a :: KX] f= c2 fr K2 

A |= ci\ci a £ Dom(A) 

A \= let a = ci in c2 end fr {c'1/a}K2 

Well-formed Type 

Assume A is well-formed. Check that r is well-formed. 

Let 

A\=T 

Constructor 
A |= T(c) 
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A \= k A (= k\n 
A[a::n] f= T\ A[Q::K] f= T-[\T[ 

A[OI::K][X : T{] \= T2    a g Dom(A) 

A \= (a :: k, x : Ti) —> T2 

    Float 

ArrowType 

A |= Float 

A |= n   A\=T2 

A\=TiXT2 

PairType 

Type Analysis A f= e JJ. r 

Note that we restrict this to core types. Assume A and t are well-formed. Check that e is well-typed, 
and has type r. 

A |= e ft r'    A\=T' = T 
    Analysis 
A\=elj.r 

Type Synthesis A |= e ft r 

Assume A is well-formed. Check that e is well-formed and construct its type r, such that A (= r 

    variable 
A [a; : r] f= x ft r 

A |= ei ft Ti    A [a; : rx] (= e2 ft r2    a; £ Dom(A) 
    lete 

A |= let x = e\ in e2 end ft T2 

A |= c ft K A (= c\c' 
A[a::n] |= e ft r   a £ Dom(A) 

A (= let a = c in e end ft {c'/a}r 
letc 

A |= k A\=k\n 
A[a::n} \= n A[U::K] (= rA^' 
A[a:-.K] (= r2 A[a::/e] (= T2\T'2 

A[a::n}[x:T[}[f:(a::K,T[)-^T^]\=ei\^ 
f,x,a £ Dom(A) 

A (= rec/ = A(a::fc,a: : ri) : r2.e ft (a :: K,T[) —>• r2 

A |= ei ft (a :: K, ri) -> r2   A (= c JJ- K 

A (= c\c' A |= e2 J| {c'/a}ri 

rec 

A \=ei[c]e2i\{c'/a}T2 
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A^eiftT(ce)    A\=ce^cx->c2   A^e2J|r(Cl) 
    Monomorphic app 
A\=ex\\e2i\T(c2) 

A |= ei ft TX    A |= e2 ft r2 

A h< ei,e2 >ftri xr2 

A |= e fr TX x r2 
    type.projl 

pair 

A |= e.l i\ n 

A |= e ff T(c)   A[=CH>CIXC2 

A|=e.lftT(ci) 

A f= e fr n X r2 
    type_proj2 
A (= e.2 ft r2 

A |= e fr T(c)    A|=ci->ciXC2 

A h= e.2 ff T{c2) 

    float 
A \= r fr F/oai 

    int 

con_projl 

con_proj2 

A |= n if T{Int) 

A\=e\). Float 

A |= boxfloat(e) fr T(BoxFloat) 

A |= e JJ. T(BoxFloat) 

box 

A |= unboxfloat(e) fr F/oai 
unbox 

A \= e ft T(c) A |= c •-)■ ex + c2 

A[z : T(ci +1 c2)] (= ci itn    A[x : r(Cl +
1 c2)] |= e2 ff r2 

A\=Tx=T2 

A (= caseea;of {inl(ei) =» e2,inr(ei) =»fr}rj 

A^c^T        A |= c2 ^ T 
A |= cx\c[ A \= c2\c'2 

Ah^JVi)    inl 

Af=inlCl)C2cftr(ci + c'2) 
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A |= Cl\c;        A |= c2\c'2 

A\=el\T(c>2)  

At=inrCl,C2eftT(ci + c/
2) 

mr 

A\=ctyT A\= c\c' 
A \= ei 1) T{Int)   A \= e2 ty T(c') 

array 
A (= arrayc(ei, e2) ft T(c' array) 

A f= ei ff T(c)    A(=CH>C' array   A \= e2 JJ- /n* 

AMub[ei](e2,ft)T(C') 

A |= ei 4J- T{BoxFloat array)    A (= e2 4.1 r(Jnf) 

sub 

fsub 
A f=fsub(ei,e2) ft F/oai 

B.2    Termination Proofs 

B.2.1     Proof of Lemma 7 

To show: SZ is order preserving. That is, J\ -< J2 => SZ{J\) < SZ(J2) where < is the lexicographic 
ordering on N x N. 

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each 
immediate subderivation is strictly smaller according to the given metric. We ignore subderivations 
that correspond to judgements which are independently known to be decidable, such as subkinding 
and constructor equivalence. Technically, this may be viewed as using the constant measure that 
always returns zero for these judgements. 

• Kind standardization A (= k\n 

Type No premises 

Singleton.Type 

SZ(A\=c\c')   =    (szc(c),0) 

<    {szc{c) +1,0) 

=   SZ(A f= ST(C)\ST(C')) 

Singleton_Any 

SZ(A^=C1\K)   =    (S2c(c),0) 

<    (szc(c) +1,0) 

=   SZ(A\=S{C)\K) 

Pi 
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5Z(A|=Ai\«i)   =   (s^(fci),0) 

<    (s^„(n(a::fci).fc2),0) 

=    SZ{A \= U(a :: fci).Jfe2\II(a :: Ki).«2) 

5Z(A[a::KX] |= k2\n2)   =    (szK{k2),0) 

<    (szK{Ii{a::kl).k2),0) 

=   5Z(A|=n(a::Jfc1).fc2\n(a::Ki).«2) 

Sigma As with the Pi case. 

• Constructor standardization (All cases except those below are just decomposition of the 
constructor) 

Lambda 

SZ(A^k\n)   =    (szK(k),0) 

<    (szc(\a::k.c),0) 

=   SZ{A (= \a::k.c\\a::K.c') 

SZ{A[a::n} \= c\c')   =    {szc{c),0) 

<    (szc(\a::k.c),0) 

=    SZ(A \= \a::k.c\\a::K.c') 

Let The size of the original derivation is 

SZ{A f= let a = c\ in c2 end\let a = c[ in c2 end) = (szc(ci) + szc(c2),0) 

2. 

3. 

SZ(A\=cM)   =   (wc(ci).O) 

<    {szc(ci) + szc(c2),0) 

SZ{A\=CI1\K)   =    (szc(Cl),0) 

<    {szc(ci) + szc(c2),0) 

SZ(A[a::K] \= c2\c'2)   =   (wrc(c2),0) 

<    (szc(c2) + szc(ci),0) 
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• Well Formed Kind A |= k 

Type, Singleton_Type As before 

Singleton_Any 

SZ(A\=ci\K)   =    (s*c(c),0) 

<     (S2C(C) + 1,0) 

=    SZ(A^S(c)) 

Pi 

1. 

SZ(A^h)   =   (sz^O) 

<      (S2K(*1) + S2„(fc2),0) 

=   SZ(A(=n(a::Jbi).fc2) 
2. 

5Z(A[a::Ki] (= A2)    =    (s««(A2),0) 

< (S^AC(^I)   +^K(^2),0) 

=    5Z(A(=n(a::Ä:1).Ä:2) 

Sigma As with the Pi case. 

• Kind Analysis remains unchanged. 

• Kind Synthesis A (= c ff K 

Variable By lemma 4.  Note that kinds in the context are restricted to the core syntactic 
forms. 

BoxFloat No premises 

Int No premises 

li Let K = ST(li{a,ß).{c'vc'2).l) x ST{ti{a,ß).{dvd2).2) 

1. 

SZ(A[a::T][ß::T] \= cx J) T)    = (wc(Cl), 1) 

< (S2c(ci) + szc(c2),0) 

= (S2c(//(fl = Ci,fe=C2)),0) 

= 5Z(Ah=^K/3).(ci,c2)frK) 

5Z(A[a::T][/3::T] h CiVi)   =    (wc(ci),0) 
<    (szc(ci) + szc(c2),0) 

=    {szc(n(a,ß).(c1,c2)),0) 

3. The cases for c2 are exactly the same. 
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Pair 

1. 

SZ{A \=c^T )   =    (szc(a),l) 

<    {szc{ci) + szc(c2),0) 

=   (szc(cixc2),0) 

2. 

=   SZ(A |=ci xc21\ST{ A x c'2)) 

SZ(A\=Cl\c[) =      (S2c(ci),0) 

<      (S2c(ci) + S2c(c2),0) 

=   SZ(A^Clxc2frSr(c' L X 4)) 
3. Similarly for the c2 premises. 

Arrow As with the Pair case. 

Sum As with the Pair case. 

Array 

i. 

SZ{A\=cl\T)   = 

< 

(szc(c),l) 

(sZc(c) + 1,0) 

(szc(c array), 0) 

2. 

= SZ(A |= c array ff 5T(C arrc «2/)) 

SZ{A\=c\c')   = (szc(c),0) 

< (szc(c) + 1,0) 

5Z(A j= c array ff c' array) 

Lambda 

i. 

SZ{A\=k)   = 

< 

{szK(k),0) 

(szK(k) + szc(c),0) 

(szc(\a::k.c),0) 

2. 

— SZ(A^=\a::k.ci\n{a::K) .*') 

SZ(A \= k\n) =    (^K(^),0) 

<    (szc(Aa::A:.c),0) 

3. 

=   5Z(At=Aa::ifc.cffn(a:: K).K') 

SZ(A[a :: n] \= cff/c')    =    (szc{c),0) 

<    (szc(Xa::k.c),0) 

=   SZ{A\=Xa::k.c i\Tl(a::K).K') 
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App 

1. 

2. 

5Z(A|=cifrn(a::K1).K2)    = (szc(Cl),0) 

< (s2c(ci) + S2c(c2),0) 

= (szc(cic2),0) 

= SZ(A (= Cl c2 fr {4/a}«2) 

5Z(A[=C2^K1)    =    (szc(c2),l) 

<      (8Zc{CiC2),0) 

=   5Z(A^Clc2fr{c2/o}K2) 

5Z(Ahc2\c'2)   =    (s*c(c2),0) 

<    (s^c(cic2),0) 

=   SZ(A^Clc2i]{c'2/a}K2) 

Record As before 

Projl As before 

Proj2 

SZ(A \=ci\ E(a■::K1).K2)    = (szc{c),0) 

A    < {szc{c) + 1,0) 

= (szc(c.l),0) 

= SZ(A |= cl i\ {c'.l/a}K2) 

SZ(A^c\c')   =    (szc(c),0) 

<    (szc(c.l),0) 

=   5Z(A (= cl i\ {C'.1/O}K2) 

Let 

1. 

5Z(A |= Cl Ü KO    = (s2c(ci),0) 

< (szc(ci) + szc(c2),0) 

= (szc(let a = ci inc2end),0) 

= 5Z(A [= let o = ci inc2end f|-{ci/a}K2) 

5Z(A[a :: KX] |= C2 fr K2)    =    («zc(c2),0) 

<      (•52C(C1) + S2C(C2),0) 

=    (szc(let a = ci inc2end),0) 

=   5Z(A |= let a = cx inc2end ft {C\/O)K2) 
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SZ(A\=cM)   = 
< (szc(let a = ci in ci end), 0) 

SZ(A |= let a = c\ in c<i end ff {c'j/a}/^) 
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